Selasa, 10 Maret 2015

Pengertian Termodinamika





1.      Pengertian Termodinamika

            Termodinamika adalah satu cabang fisika teoritik yang berkaitan dengan hukum-hukum pergerakan panas,dan perubahan dari panas menjadi bentuk-bentuk energi yang lain.Istilah ini diturunkan dari bahasa yunani Therme (panas) dan dynamis (gaya).Cabang ilmu ini berdasarkan pada dua prinsip dasar yang aslinya diturunkan dari eksperimen,tapi kini dianggap sebagai aksiom.prinsip pertama adalah hukum kekekalan energi,yang mengambil bentuk hukum kesetaraan panas dan kerja.Prinsip yang kedua menyatakan bahwa panas itu sendiri tidak dapatmengalir dari benda yang lebih dingin ke benda yang lebih panas tanpa adanya perubahan dikedua benda tersebut.

2.      Sistem termodinamika

            Sistem termodinamika adalah bagian dari jagad raya yang diperhitungkan.semua batasan yang nyata atau imajinasi memisahkansistem dengan jagad raya,yang disebut lingkungan.
Ada tiga jenis sistem termodinamika berdasarkan jenis pertukaran yang terjadi antara
sistem dan  lingkungan:

a)      Sistem Terisolasi

            Sistem ini tidak terjadi pertukaran panas,benda atau kerja dengan lingkungan.Contoh dari sistem terisolasi adalah wadah terisolasi,seperti tabung gas terisolasi.

b)      Sistem Tertutup

            Pada sistem ini terjai pertukaran energi tapi tidak terjadi pertukaran benda dengan lingkungan.Rumah hijau adalah contoh dari sistem tertutup dimana terjadi pertukaran panas tetapi tidak terjadi pertukaran kerja dengan lingkungan.Apakah suatu sistem terjadi pertukaran panas,kerja atau keduanya biasanya dipertimbangkan sebagai sifat pembatasnya.Pembatas adibiatik yaitu tidak diperbolehkan pertukaran panas sedangkan pembatas rigid yaitu tidak memperbolehkan pertukaran kerja.
c)      Sistem Terbuka
             Pada sistem ini terjadi pertukaran energi dan benda dan lingkungannya.sebuah pembatas memperbolehkan pertukaran benda disebutpermeabel.Samudra merupakan contoh dari sistem terbuka.

3.      KeadaanTermodinamika      
             Ketika sistem dalam keadaan seimbang dalam kondisi yang ditentukan,ini
disebut dalam keadaan pasti (atau keadaan sistem).
Untuk keadaan termodnamika tertentu,banyak sifat dari sistem dispesifikasikan.Properti ini tidak bergantung dengan jalur dimana sistem ini membentuk keadaan tersebut,disebut fungsi keadaan dari sistem.Bagian selanjutnya dalam seksi ini hanya mempertimbangkan properti,yang merupakan fungsi keadaan.
 



4.      Hukum – hukum Dasar Termodinamika
            Hukum –hukum termodinamika pada prinsipnya menjelaskan peristiwa perpindahan panas dan kerja pada proses termodinamika.Terdapat 4 hukum dasar yang berlaku di dalam sistem termodinamika,yaitu:
 
       I.            Hukum Awal
            Termodinamika hukum ini menyatakan bahwa apabila dua buah benda yang berada didalam kesetimbangan thermal digabungkan dengan sebuah benda lain,maka ketiga-tiganya berada dalam kesetimbangan thermal.
 

    II.            Hukum Pertama
            Hukum termodinamika pertama berbunyi “Energi tidak dapat diciptakan dan dimusnahkan tetapi dapat dikonversi dari suatu bentu ke bentuk yang lain”.Hukum pertama adalah prinsip kekekalan energi yang memasukan kalor sebagai model perpindahan energi.Menurut hukum pertama,energi didalam suatu benda dapat ditingkatkan dengan cara menambahkan kalor ke benda atau dengan melakukan usaha pada benda.Hukum pertama tidak membatasi arah perpindahan kalor yang dapat terjadi.
Aplikasi : Mesin-mesin pembangkit energi dan pengguna energi.Semuanya hanyamentransfer dengan berbagai cara.

 III.            Hukum kedua
             Termodinamika hukum kedua terkait dengan entropi.Entropi adalah tingkat keacakan energi.Hukum ini menyatakan bahwa total entropi dari suatu sistem termodinamika terisolasi cenderung untuk meningkatkan waktu,mendekati nilai maksimumnya.
Aplikasi : kulkas harus mempunyai pembuang panas dibelakangnya,yang suhunya lebih tinggi dari udara sekitar.Karena jika tidak panas dari isi kulkas tidak bisa terbuang keluar.
 
  IV.            Hukum ketiga
             Hukum termodinamika ketiga terkait dengan temperatur nol absolut.Hukum ini menyatakan bahwa pada saat suatu sistem mencapai temperatur nol absolut,semua proses akanberhenti da entropi sistem akan mendekati nilai minimum.Hukum ini juga menyatakan bahwa entropi benda berstruktur kristal sempurna pada temperatur nol absolut bernilai nol.
Aplikasi : kebanyakan logam bisa menjadi superkonduktor pada suhuyang sangat rendah,karena tidak banyak acakan gerakan kinetik dalam skala mokuler yang mengganggu aliran elektron.
Penerapan Hukum Termodinamika Pertama pada Beberapa proses
Termodinamika

Hukum pertama termodinamika dilakukan dalam empat proses,Yaitu:
Proses Isotermal
     Dalam proses ini,suhu sistem dijaga agar selalu konstan.Suhu gas ideal
berbanding lurus dengan energi dalam gas ideal.
dan tekanan sistem berubah penjadi (tekanan sistem berkurang).
Proses Adiabatik
     Dalam proses adibiatik,tidak ada kalor yang ditambahkan pada sistem atau meninggalkan sistem (Q =      O).Proses adibiatik bisa terjadi pada sistem tertutup yang terisolasi dengan baik.Untuk sistem tertutup yang terisolasi dengan baik,biasanya tidak ada kalor yang dengan seenaknya mengalir kedalam sistem atau meninggalkan sistem.Proses adibiatik juga bisa terjadi pada sistem tertutup yang tidak terisolasi.Proses dilakukan dengan
sangat cepat sehingga kalor tidak sempat mengalir menuju sistem atau
meninggalkan sistem.
Proses Isokorik
      Dalam prose isokorik,volume sistem dijaga agar selalu konstan.Karenavolume sistem selalu konstan.Maka sistem tidak bisa melakukan kerjapada lingkungan.Demikian juga sebaliknya,lingkungan tidak bisa melakukan kerja pada sistem.
Proses Isobarik
      Dalam proses isobarik,tekanan sistem dijaga agar selalu konstan.Karena yang konstan adalah tekanan,maka perubahan energi dalam (del U),kalor (Q),dan kerja (W) pada proses isobarik tidak ada yang bernilai nol.Dengan demikian,Persamaan hukum pertama termodinamika tetep utuh seperti semula.



Hukum Termodinamika I
ΔU = Q − W
Keterangan :
ΔU = perubahan energi dalam (joule)
Q = kalor (joule)
W = usaha (joule)

Proses-proses

Isobaris → tekanan tetap
Isotermis → suhu tetap → ΔU = 0
Isokhoris → volume tetap (atau isovolumis atau isometric) → W = 0
Adiabatis → tidak terjadi pertukaran kalor → Q = 0
Siklus → daur → ΔU = 0

Persamaan Keadaan Gas

Hukum Gay-Lussac
Tekanan tetap → V/T = Konstan → V1/T1 = V2/T2


Hukum Charles
Volume tetap → P/T = Konstan → P1/T1 = P2/T2


Hukum Boyle
Suhu tetap → PV = Konstan → P1V1 = P2V2


P, V, T Berubah (non adiabatis)
(P1V1) / (T1) = (P2V2) / (T2)

Adiabatis
P1V1 γ= P2V2γ
T1V1 γ − 1= T2V2γ − 1

γ = perbandingan kalor jenis gas pada tekanan tetap dan volum tetap → γ = Cp/Cv
Usaha
W = P(ΔV) → Isobaris
W = 0 → Isokhoris
W = nRT ln (V2 / V1) → Isotermis
W = − 3/2 nRΔT → Adiabatis ( gas monoatomik)

Keterangan :
T = suhu (Kelvin, jangan Celcius)
P = tekanan (Pa = N/m2)
V = volume (m3)
n = jumlah mol
1 liter = 10−3m3
1 atm = 105 Pa ( atau ikut soal!)
Jika tidak diketahui di soal ambil nilai ln 2 = 0,693
http://fisikastudycenter.files.wordpress.com/2010/10/uhtermodinamika7.png
Mesin Carnot
η = ( 1 − Tr / Tt ) x 100 %
η = ( W / Q1 ) x 100%
W = Q1 − Q2

Keterangan :
η = efisiensi mesin Carnot (%)
Tr = suhu reservoir rendah (Kelvin)
Tt = suhu reservoir tinggi (Kelvin)
W = usaha (joule)
Q1 = kalor masuk / diserap reservoir tinggi (joule)
Q2 = kalor keluar / dibuang reservoir rendah (joule)

Soal
Suatu gas memiliki volume awal 2,0 m3 dipanaskan dengan kondisi isobaris hingga volume akhirnya menjadi 4,5 m3. Jika tekanan gas adalah 2 atm, tentukan usaha luar gas tersebut!
(1 atm = 1,01 x 105 Pa)

Pembahasan
Data :
V2 = 4,5 m3
V1 = 2,0 m3
P = 2 atm = 2,02 x 105 Pa
Isobaris → Tekanan Tetap

W = P (ΔV)
W = P(V2 − V1)
W = 2,02 x 105 (4,5 − 2,0) = 5,05 x 105 joule





Mengenal MOS/MOSFET




Hello guys.. ketemu lagi.. Kali ini saya akan memposting materi mengenai elektronika yaitu Mengenal FET/MOSFET. Langsung saja kalian bias nyimak pembahasan saya. 

A.      Pengertian FET/MOSFET
 Kata 'logam' pada nama yang sekarang digunakan sebenarnya merupakan nama yang salah karena bahan gerbang yang dahulunya lapisan logam-oksida sekarang telah sering digantikan dengan lapisan polisilikon (polikristalin silikon). Sebelumnya aluminium digunakan sebagai bahan gerbang sampai pada tahun 1980 -an ketika polisilikon mulai dominan dengan kemampuannya untuk membentuk gerbang menyesuai-sendiri. Walaupun demikian, gerbang logam sekarang digunakan kembali karena sulit untuk meningkatkan kecepatan operasi transistor tanpa pintu logam. IGFET adalah peranti terkait, istilah lebih umum yang berarti transistor efek-medan gerbang-terisolasi, dan hampir identik dengan MOSFET, meskipun dapat merujuk ke semua FET dengan isolator gerbang yang bukan oksida. Beberapa menggunakan IGFET ketika merujuk pada perangkat dengan gerbang polisilikon, tetapi kebanyakan masih menyebutnya MOSFET.

B.      Komposisi
Fotomikrograf dua gerbang logam MOSFET dalam ujicoba.

Biasanya bahan semikonduktor pilihan adalah silikon, namun beberapa produsen IC, terutama IBM, mulai menggunakan campuran silikon dan germanium (SiGe) sebagai kanal MOSFET. Sayangnya, banyak semikonduktor dengan karakteristik listrik yang lebih baik daripada silikon, seperti galium arsenid (GaAs), tidak membentuk antarmuka semikonduktor-ke-isolator yang baik sehingga tidak cocok untuk MOSFET. Hingga kini terus diadakan penelitian untuk membuat isolator yang dapat diterima dengan baik untuk bahan semikonduktor lainnya. Untuk mengatasi peningkatan konsumsi daya akibat kebocoran arus gerbang, dielektrik κ tinggi menggantikan silikon dioksida sebagai isolator gerbang, dan gerbang logam kembali digunakan untuk menggantikan polisilikon[1]. Gerbang dipisahkan dari kanal oleh lapisan tipis isolator yang secara tradisional adalah silicon dioksida, tetapi yang lebih maju menggunakan teknologi silicon oxynitride. Beberapa perusahaan telah mulai memperkenalkan kombinasi dielektrik κ tinggi + gerbang logam di teknologi 45 nanometer.


C.      Simbol sirkuit
Berbagai simbol digunakan untuk MOSFET. Desain dasar umumnya garis untuk saluran dengan kaki sumber dan cerat meninggalkannya di setiap ujung dan membelok kembali sejajar dengan kanal. Garis lain diambil sejajar dari kanal untuk gerbang. Kadang-kadang tiga segmen garis digunakan untuk kanal peranti moda pengayaan dan garis lurus untuk moda pemiskinan.
Sambungan badan jika ditampilkan digambar tersambung ke bagian tengan kanal dengan panah yang menunjukkan PMOS atau NMOS. Panah selalu menunjuk dari P ke N, sehingga NMOS (kanal-N dalam sumur-P atau substrat-P) memiliki panah yang menunjuk kedalam (dari badan ke kanal). Jika badan terhubung ke sumber (seperti yang umumnya dilakukan) kadang-kadang saluran badan dibelokkan untuk bertemu dengan sumber dan meninggalkan transistor. Jika badan tidak ditampilkan (seperti yang sering terjadi pada desain IC desain karena umumnya badan bersama) simbol inversi kadang-kadang digunakan untuk menunjukkan PMOS, sebuah panah pada sumber dapat digunakan dengan cara yang sama seperti transistor dwikutub (keluar untuk NMOS, masuk untuk PMOS).
Kanal-P
Kanal-N
JFET
MOSFET pengayaan
MOSFET pemiskinan

Untuk simbol yang memperlihatkan saluran badan, di sini dihubungkan internal ke sumber. Ini adalah konfigurasi umum, namun tidak berarti hanya satu-satunya konfigurasi. Pada dasarnya, MOSFET adalah peranti empat saluran, dan di sirkuit terpadu banyak MOSFET yang berbagi sambungan badan, tidak harus terhubung dengan saluran sumber semua transistor.